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K-trivials, Martin-Löf randoms, and ≤T

▶ A ⊆ {0, 1}N is called K-trivial if ∀nK(A↾ n) ≤ K(n) +O(1).

▶ If Z ̸≥T ∅′ is MLR, A is c.e. and A ≤T Z, then A is K-trivial

[HNS, 2007]. Does every K-trivial A have such a Z Turing above?

The following two results together show the answer is YES, in fact via a

single Z.

Theorem (BGKNT, JEMS 2016)

Let Z be MLR. Then

Z is Oberwolfach random ⇐⇒
Z does not compute every K-trivial.

Theorem (by Day and Miller, MRL, 2015)

There is Z ̸≥T ∅′ that is MLR and not

Oberwolfach random.
2 / 1



3 / 1



Algorithmic test notions

Work in [0, 1] or in {0, 1}N. Most test notions refine this:

A (weak 2) test is a uniformly Σ0
1 sequence (Gm)m∈N such that

limm λGm = 0. Z fails the test if Z ∈
⋂

Gm.

▶ OW test (or left-c.e. bounded test):

λGm = O(β − βm), where (βm) is a

computable sequence of rationals, and

β = supm βm.

▶ Martin-Löf test: β is computable

(equivalently, could require λGm ≤ 2−m)

▶ Schnorr test: λGm is computable

uniformly in m.
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Borwein-Ditor Theorem

Theorem (Borwein-Ditor, 1978)

Let A ⊆ R be closed. Let (rm) be a null sequence in R.
Almost surely,

x ∈ A ⇒ x ∈ A+ rm for infinitely many m.

▶ The proof is easy: The set E = {x : ∃∞m [x ∈ A+ rm]} is

contained in A because A is closed. Also λE ≥ λA.

▶ Result fails with “for a.e. m”: Borwein and Ditor build an A

and null sequence so that for each x ∈ R, also
∃∞mx ̸∈ A+ rm. All computable.

▶ If A is effectively closed and (rm) is computable, then each

1-generic x does this. So we don’t get a test notion out of this.
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Theorem (Galicki and N., Proceedings of CiE 2016)

Let P ⊆ R be effectively closed, (rm) computable null sequence.

(a) If x is OW-random then ∃m [x ∈ P + rm] (hence ∃∞).

(b) In case λP is computable, Schnorr randomness suffices.

Sketch: Work in {0, 1}N instead of [0, 1] (i.e., ignore dyadic rationals).

S := {0, 1}N − P =
⋃

m[σm] for a computable sequence of strings (σm).

Can assume rm ≤ 2−m. Let q be a computable function with

q(m) > m and ∀i < m [q(m) > |σi|].

A test that x fails is obtained by shifting S by rq(m) and removing the

first m dyadic intervals unshifted:

Gm = (S + rq(m)) \ [σ0, . . . , σm−1]
≺.

(a) (Gm) is OW test via β = λS, βm = λ[σ0, . . . , σm−1]
≺ −m2−m.

(b) β is computable by hypothesis, so (Gm) is Schnorr test.
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Any left-c.e. ML-random fails the BD property

We say that Z has the BD property if for each P ⊆ R be effectively

closed, (rm) computable null sequence, Z ∈ P implies that Z ∈ P + rm

for some m.

Let Z be a left-c.e. ML random.

▶ By the usual existence of a universal ML test, Z = min(P) for

some effectively closed set of ML-randoms.

▶ Thus Z fails the BD property via any computable null

sequence of negative real numbers.

We don’t know of substantially different examples of Turing

complete ML-randoms that fail BD.

In fact each ML-random with the BD property could be Turing

incomplete.
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Version for k null sequences

Theorem (Borwein-Ditor, 1978)

Let A ⊆ R be closed. Let k ∈ N. For each ℓ < k let (rℓm) be a null

sequence in R. Then almost surely

x ∈ A ⇒ ∀ℓ < k [x ∈ A+ rℓm] for infinitely many m.

Their easy proof using that A is closed doesn’t work. However, in

the algorithmic settings, the proof goes through almost unchanged.
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Comparison with density randomness
▶ For P ⊆ {0, 1}N and Z ∈ {0, 1}N one defines the lower density

ρ(P | Z) = lim infk λ(P ∩ [Z ↾ k])/2−k.

▶ We say that Z ∈ MLR is density random if ρ(P | Z) = 1 for

each effectively closed P with Z ∈ P . (See Miyabe N and

Zhang, BSL, 2016)
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Multiple recurrence
We work mainly in the setting {0, 1}N with the shift operator

T : {0, 1}N → {0, 1}N that erases the first bit. Note that T is

measure preserving (ergodic in fact).

Definition

Let P ⊆ {0, 1}N be measurable, and let Z ∈ {0, 1}N. We say that

Z is k-recurrent in P if there is n ≥ 1 such that

∀i.1 ≤ i ≤ k [T ni(Z) ∈ P ].

We say that Z is multiply recurrent in P if Z is k-recurrent in P
for each k ≥ 1.

By a general result of Furstenberg, if λP > 0, then almost every Z

is multiply recurrent in P .
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Algorithmic versions
Theorem (Downey, Nandakumar, N. 2019)

Let P ⊆ {0, 1}N be effectively closed with 0 < α := λP .

(a) Each Martin-Löf random Z is multiply recurrent in P .

(b) If α is computable then Schnorr randomness suffices.

(c) If P is clopen then Kurtz randomness suffices.

Idea for (a): Fix k, and assume Z is not k-recurrent.

First assume that 1− α < 1/k. We can build a ML-test (Gm) for Z

that looks for failures of k-recurrence on longer and longer initial

segments. By the hypothesis, the measure of such a failure is at most

q = k(1− α) < 1. Then iterate this m times for Gm with λGm < qm.

To remove the additional hypothesis, write {0, 1}N − P =
⋃

r[τr] for a

computable prefix free sequence, and work with P ∪
⋃

i<r[τi] instead

where r is large enough so that hypothesis holds. Extra complications.
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Recurrence for k shift operators

The probability space under consideration is now X = {0, 1}Nk

with the product measure. For 1 ≤ i ≤ k

Ti(Z)(u1, . . . , uk) = Z(u1, . . . , ui + 1, . . . , uk).

Z is recurrent in a class P ⊆ X if [Z ∈
⋂

i≤k T
−n
i (P)] for some n.

Theorem

Let P ⊆ X be a Π0
1 class with 0 < p = λP . Let Z ∈ X .

If Z is (a) ML-random (b) Schnorr random (c) Kurtz-random,

then Z is recurrent in P assuming also that for (b) λP is

computable, for (c) P is clopen.
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What is the full result?

We don’t have an algorithmic version of the general multiple

recurrence theorem.

Conjecture

▶ Let (X,µ) be a computable probability space.

▶ Let T1, . . . , Tk be computable measure preserving

transformations that commute pairwise.

▶ Let P be effectively closed with µP > 0.

If z ∈ P is ML-random then ∃n[z ∈
⋂

i≤k T
−n
i (P)].
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