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K-trivials, Martin-Lof randoms, and <gp
> A C{0,1}Vis called K-trivial if YnK (A [ n) < K(n) + O(1).

» If Z 7 (' is MLR, A is c.e. and A <7 Z, then A is K-trivial
[HNS, 2007]. Does every K-trivial A have such a Z Turing above?

The following two results together show the answer is YES, in fact via a
single Z.
Theorem (BGKNT, JEMS 2016)

Let Z be MLR. Then
Z is Oberwolfach random <—
Z does not compute every K-trivial.

Theorem (by Day and Miller, MRL, 2015)

There is Z Z7 (' that is MLR and not
Oberwolfach random.
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Interactions of Algorithmic Randomness

Computability

+ Complexity of subsets of N
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+ Absolute, such as low, below
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Randomness

- Defines hierarchy of rdness
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- Separations

Analysis,
ergodic theory

"Almost sure"
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Algorithmic test notions

Work in [0,1] or in {0, 1}. Most test notions refine this:
A (weak 2) test is a uniformly ¢ sequence (G,,)men such that
lim,, AG,,, = 0. Z fails the test if Z € (G,,.

» OW test (or left-c.e. bounded test):
MG, = O(B — B), where (8,,) is a
computable sequence of rationals, and

B = sup, B

» Martin-Lof test: [ is computable
(equivalently, could require AG,,, < 27™)

» Schnorr test: AG,, is computable

uniformly in m.
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Interactions Randomness- Analysis

Randomness

+ Defines hierarchy of rdness
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Canad. Math. Bull. Vol. 21 (4), 1978

TRANSLATES OF SEQUENCES IN SETS
OF POSITIVE MEASURE

BY
D. BORWEIN AND S. Z. DITOR

Given a measurable set A of real numbers with measure mA >0, and a
sequence {d,} of real numbers converging to zero, is there always an x such
that x+d, € A for all n sufficiently large?

The answer to this question, which was posed to the authors by P. Erdos, is
NO. The actual situation can be described as follows.

THeEOREM 1. (i) If A is a measurable set with mA >0 and {d,} is a sequence
converging to zero, then, for almost all xe A, x+d, € A for infinitely many n.

(ii) There is a measurable set A with mA >0 and a monotonic sequence {d,}
of positive numbers converging to zero such that, for all x, x+d, & A for infinitely
many n.
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Borwein-Ditor Theorem

Theorem (Borwein-Ditor, 1978)

Let A C R be closed. Let (r,,) be a null sequence in R.
Almost surely,

r € A= x e A+ r, for infinitely many m.

» The proof is easy: The set E = {z: I%°m [z € A+ 1]} is
contained in A because A is closed. Also A\E > M\A.

» Result fails with “for a.e. m”: Borwein and Ditor build an A
and null sequence so that for each x € R, also
FI*ma & A+ rp,. All computable.

» If A is effectively closed and (r,,) is computable, then each
1-generic x does this. So we don’t get a test notion out of this.
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Theorem (Galicki and N., Proceedings of CiE 2016)
Let P C R be effectively closed, (r,,) computable null sequence.
(a) If z is OW-random then Im [x € P + r,,] (hence 3°).

(b) In case AP is computable, Schnorr randomness suffices.

Sketch: Work in {0, 1} instead of [0, 1] (i.e., ignore dyadic rationals).
S := {0, 1} — P =, [0/] for a computable sequence of strings (o.,).
Can assume 7, < 27™. Let ¢ be a computable function with

g(m) > m and Vi < m[q(m) > |o|].

A test that x fails is obtained by shifting S by 7,(,,) and removing the
first m dyadic intervals unshifted:

Gm = (S + Tq(m)) \ [0‘0, .. .,Um,1]<.

(a) (Gpn) is OW test via = AS, B = Aoo, ..., om—1]" — m2™™.
(b) 5 is computable by hypothesis, so (G),) is Schnorr test.
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Any left-c.e. ML-random fails the BD property

We say that Z has the BD property if for each P C R be effectively

closed, (r,,) computable null sequence, Z € P implies that Z € P + ry,
for some m.

Let Z be a left-c.e. ML random.

» By the usual existence of a universal ML test, Z = min(P) for
some effectively closed set of ML-randoms.

» Thus Z fails the BD property via any computable null
sequence of negative real numbers.

We don’t know of substantially different examples of Turing
complete ML-randoms that fail BD.

In fact each ML-random with the BD property could be Turing
incomplete.
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Version for & null sequences

Theorem (Borwein-Ditor, 1978)

Let A C R be closed. Let k € N. For each ¢ < k let (rf,) be a null
sequence in R. Then almost surely

v € A=V <klre A+rl)] for infinitely many m.

Their easy proof using that A is closed doesn’t work. However, in
the algorithmic settings, the proof goes through almost unchanged.
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Comparison with density randomness

» For P C {0,1} and Z € {0, 1}" one defines the lower density
p(P | Z) =liminf, \(P N [Z] k])/27".
» We say that Z € MLR is density random if p(P | Z) =1 for
each effectively closed P with Z € P. (See Miyabe N and
Zhang, BSL, 2016)
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Multiple recurrence

We work mainly in the setting {0, 1} with the shift operator
T :{0,1} — {0,1}" that erases the first bit. Note that 7' is
measure preserving (ergodic in fact).

Definition

Let P C {0, 1} be measurable, and let Z € {0, 1}". We say that
Z 18 k-recurrent in P if there is n > 1 such that

Vil <i<k[T"(Z) e P

We say that Z is multiply recurrent in P if Z is k-recurrent in P
for each k£ > 1.

By a general result of Furstenberg, if AP > 0, then almost every Z
is multiply recurrent in P.
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Algorithmic versions

Theorem (Downey, Nandakumar, N. 2019)

Let P C {0, 1} be effectively closed with 0 < a := A\P.

(a) Each Martin-Lof random Z is multiply recurrent in P.
(b) If v is computable then Schnorr randomness suffices.

(c) If P is clopen then Kurtz randomness suffices.

Idea for (a): Fix k, and assume Z is not k-recurrent.

First assume that 1 — a < 1/k. We can build a ML-test (G,,) for Z
that looks for failures of k-recurrence on longer and longer initial
segments. By the hypothesis, the measure of such a failure is at most
q¢ = k(1 —a) < 1. Then iterate this m times for G,, with AG,, < ¢™.
To remove the additional hypothesis, write {0, 1} — P =, [r] for a
computable prefix free sequence, and work with P U (J,_,[7;] instead

where r is large enough so that hypothesis holds. Extra complications. )
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Recurrence for k shift operators

The probability space under consideration is now X = {0, 1}Nlc
with the product measure. For 1 <1 <k

Ti(Z)(uy, ... ug) = Z(ug, ... ug + 1,000 ug).

Z is recurrent in a class P C X' if [Z € (), T, "(P)] for some n.

Theorem

Let P C X be a I1Y class with 0 < p = AP. Let Z € X.

If Z is (a) ML-random (b) Schnorr random (c¢) Kurtz-random,
then Z is recurrent in P assuming also that for (b) AP is
computable, for (c¢) P is clopen.
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What is the full result?

We don’t have an algorithmic version of the general multiple
recurrence theorem.

Conjecture

» Let (X, u) be a computable probability space.

» Let T1,...,T; be computable measure preserving
transformations that commute pairwise.

» Let P be effectively closed with P > 0.

If z € P is ML-random then 3n[z € N, T; "(P)].
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