Two "almost sure" theorems under the lens of algorithmic randomness

Randomness, Information and Complexity, Week 4 CIRM, Luminy Feb 22, 2024

> André Nies School of Computer Science

K-trivials, Martin-Löf randoms, and \leq_T

• $A \subseteq \{0,1\}^{\mathbb{N}}$ is called K-trivial if $\forall n K(A \upharpoonright n) \leq K(n) + O(1)$.

▶ If $Z \succeq_T \emptyset'$ is MLR, A is c.e. and $A \leq_T Z$, then A is K-trivial [HNS, 2007]. Does every K-trivial A have such a Z Turing above?

The following two results together show the answer is YES, in fact via a single Z.

Theorem (BGKNT, JEMS 2016)

Let Z be MLR. Then

Z is Oberwolfach random \iff

Z does **not** compute every K-trivial.

Theorem (by Day and Miller, MRL, 2015)

There is $Z \geq_T \emptyset'$ that is MLR and not Oberwolfach random.

Interactions of Algorithmic Randomness

Randomness

- Defines hierarchy of rdness notions via algorithmic tests
- Provides characterizations
- Separations

Computability

- Complexity of subsets of N
- · Relative via Turing reducibility
- Absolute, such as low, below halting problem, ...

Analysis, ergodic theory

"Almost sure" theorems

Algorithmic test notions

Work in [0, 1] or in $\{0, 1\}^{\mathbb{N}}$. Most test notions refine this: A (weak 2) test is a uniformly Σ_1^0 sequence $(G_m)_{m \in \mathbb{N}}$ such that $\lim_m \lambda G_m = 0$. Z fails the test if $Z \in \bigcap G_m$.

- OW test (or left-c.e. bounded test): $\lambda G_m = O(\beta - \beta_m)$, where (β_m) is a computable sequence of rationals, and $\beta = \sup_m \beta_m$.
- Martin-Löf test: β is computable (equivalently, could require $\lambda G_m \leq 2^{-m}$)
- Schnorr test: λG_m is computable uniformly in m.

Interactions Computability-Randomness

Randomness

- Defines hierarchy of rdness notions via algorithmic tests
- Provides characterizations
- Separations

Computability

- · Complexity of subsets of N
- · Relative via Turing reducibility
- Absolute, such as low, below halting problem, ...

Interactions Randomness- Analysis

Randomness

- Defines hierarchy of rdness notions via algorithmic tests
- · Provides characterizations
- Separations

ALGOR ITHMIC VERSIONS OF ALMOSS-SURE THEOREMS HOW MUCH RANDOMNESS IS NEEDED FOR THE PROPERTY TO HOLD 2

Analysis, ergodic theory

"Almost sure" theorems Canad. Math. Bull. Vol. 21 (4), 1978

TRANSLATES OF SEQUENCES IN SETS OF POSITIVE MEASURE

BY

D. BORWEIN AND S. Z. DITOR

Given a measurable set A of real numbers with measure mA > 0, and a sequence $\{d_n\}$ of real numbers converging to zero, is there always an x such that $x + d_n \in A$ for all n sufficiently large?

The answer to this question, which was posed to the authors by P. Erdös, is NO. The actual situation can be described as follows.

THEOREM 1. (i) If A is a measurable set with mA > 0 and $\{d_n\}$ is a sequence converging to zero, then, for almost all $x \in A$, $x + d_n \in A$ for infinitely many n.

(ii) There is a measurable set A with mA > 0 and a monotonic sequence $\{d_n\}$ of positive numbers converging to zero such that, for all $x, x + d_n \notin A$ for infinitely many n.

Borwein-Ditor Theorem

Theorem (Borwein-Ditor, 1978)

Let $A \subseteq \mathbb{R}$ be closed. Let (r_m) be a null sequence in \mathbb{R} . Almost surely,

 $x \in A \Rightarrow x \in A + r_m$ for infinitely many m.

- ► The proof is easy: The set $E = \{x : \exists^{\infty} m \ [x \in A + r_m]\}$ is contained in A because A is closed. Also $\lambda E \ge \lambda A$.
- ▶ Result fails with "for a.e. m": Borwein and Ditor build an A and null sequence so that for each $x \in \mathbb{R}$, also $\exists^{\infty}m x \notin A + r_m$. All computable.
- If A is effectively closed and (r_m) is computable, then each 1-generic x does this. So we don't get a test notion out of this.

Theorem (Galicki and N., Proceedings of CiE 2016)

Let $\mathcal{P} \subseteq \mathbb{R}$ be effectively closed, (r_m) computable null sequence.

(a) If x is OW-random then $\exists m \ [x \in \mathcal{P} + r_m]$ (hence \exists^{∞}).

(b) In case $\lambda \mathcal{P}$ is computable, Schnorr randomness suffices.

Sketch: Work in $\{0,1\}^{\mathbb{N}}$ instead of [0,1] (i.e., ignore dyadic rationals). $S := \{0,1\}^{\mathbb{N}} - \mathcal{P} = \bigcup_{m} [\sigma_{m}]$ for a computable sequence of strings (σ_{m}) . Can assume $r_{m} \leq 2^{-m}$. Let q be a computable function with

q(m) > m and $\forall i < m [q(m) > |\sigma_i|].$

A test that x fails is obtained by shifting S by $r_{q(m)}$ and removing the first m dyadic intervals unshifted:

$$G_m = (\mathcal{S} + r_{q(m)}) \setminus [\sigma_0, \dots, \sigma_{m-1}]^{\prec}.$$

(a) (G_m) is OW test via β = λS, β_m = λ[σ₀,...,σ_{m-1}][≺] - m2^{-m}.
(b) β is computable by hypothesis, so (G_m) is Schnorr test.

Any left-c.e. ML-random fails the BD property

We say that Z has the BD property if for each $\mathcal{P} \subseteq \mathbb{R}$ be effectively closed, (r_m) computable null sequence, $Z \in \mathcal{P}$ implies that $Z \in \mathcal{P} + r_m$ for some m.

- Let Z be a left-c.e. ML random.
 - ▶ By the usual existence of a universal ML test, $Z = \min(\mathcal{P})$ for some effectively closed set of ML-randoms.
 - ▶ Thus Z fails the BD property via any computable null sequence of negative real numbers.

We don't know of substantially different examples of Turing complete ML-randoms that fail BD. In fact each ML-random with the BD property could be Turing incomplete.

Version for k null sequences

Theorem (Borwein-Ditor, 1978)

Let $A \subseteq \mathbb{R}$ be closed. Let $k \in \mathbb{N}$. For each $\ell < k$ let (r_m^{ℓ}) be a null sequence in \mathbb{R} . Then almost surely

 $x \in A \Rightarrow \forall \ell < k [x \in A + r_m^{\ell}]$ for infinitely many m.

Their easy proof using that A is closed doesn't work. However, in the algorithmic settings, the proof goes through almost unchanged.

Comparison with density randomness

- ► For $\mathcal{P} \subseteq \{0,1\}^{\mathbb{N}}$ and $Z \in \{0,1\}^{\mathbb{N}}$ one defines the lower density $\underline{\rho}(\mathcal{P} \mid Z) = \liminf_k \lambda(\mathcal{P} \cap [Z \upharpoonright k])/2^{-k}.$
- ▶ We say that $Z \in \mathsf{MLR}$ is density random if $\underline{\rho}(\mathcal{P} \mid Z) = 1$ for each effectively closed \mathcal{P} with $Z \in \mathcal{P}$. (See Miyabe N and Zhang, BSL, 2016)

Multiple recurrence

We work mainly in the setting $\{0,1\}^{\mathbb{N}}$ with the shift operator $T: \{0,1\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}$ that erases the first bit. Note that T is measure preserving (ergodic in fact).

Definition

Let $\mathcal{P} \subseteq \{0,1\}^{\mathbb{N}}$ be measurable, and let $Z \in \{0,1\}^{\mathbb{N}}$. We say that Z is k-recurrent in \mathcal{P} if there is $n \geq 1$ such that

 $\forall i.1 \le i \le k \ [T^{ni}(Z) \in \mathcal{P}].$

We say that Z is multiply recurrent in \mathcal{P} if Z is k-recurrent in \mathcal{P} for each $k \geq 1$.

By a general result of Furstenberg, if $\lambda \mathcal{P} > 0$, then almost every Z is multiply recurrent in \mathcal{P} .

Algorithmic versions

Theorem (Downey, Nandakumar, N. 2019)

Let $\mathcal{P} \subseteq \{0,1\}^{\mathbb{N}}$ be effectively closed with $0 < \alpha := \lambda \mathcal{P}$.

- (a) Each Martin-Löf random Z is multiply recurrent in \mathcal{P} .
- (b) If α is computable then Schnorr randomness suffices.
- (c) If \mathcal{P} is clopen then Kurtz randomness suffices.

Idea for (a): Fix k, and assume Z is not k-recurrent.

First assume that $1 - \alpha < 1/k$. We can build a ML-test (G_m) for Z that looks for failures of k-recurrence on longer and longer initial segments. By the hypothesis, the measure of such a failure is at most $q = k(1 - \alpha) < 1$. Then iterate this m times for G_m with $\lambda G_m < q^m$. To remove the additional hypothesis, write $\{0, 1\}^{\mathbb{N}} - \mathcal{P} = \bigcup_r [\tau_r]$ for a computable prefix free sequence, and work with $\mathcal{P} \cup \bigcup_{i < r} [\tau_i]$ instead where r is large enough so that hypothesis holds. Extra complications.

Recurrence for k shift operators

The probability space under consideration is now $\mathcal{X} = \{0, 1\}^{\mathbb{N}^k}$ with the product measure. For $1 \leq i \leq k$

$$T_i(Z)(u_1,\ldots,u_k)=Z(u_1,\ldots,u_i+1,\ldots,u_k).$$

Z is recurrent in a class $\mathcal{P} \subseteq \mathcal{X}$ if $[Z \in \bigcap_{i \le k} T_i^{-n}(\mathcal{P})]$ for some n.

Theorem

Let $\mathcal{P} \subseteq \mathcal{X}$ be a Π_1^0 class with $0 . Let <math>Z \in \mathcal{X}$. If Z is (a) ML-random (b) Schnorr random (c) Kurtz-random, then Z is recurrent in \mathcal{P} assuming also that for (b) $\lambda \mathcal{P}$ is computable, for (c) \mathcal{P} is clopen.

What is the full result?

We don't have an algorithmic version of the general multiple recurrence theorem.

Conjecture

- Let (X, μ) be a computable probability space.
- Let T_1, \ldots, T_k be computable measure preserving transformations that commute pairwise.
- Let \mathcal{P} be effectively closed with $\mu P > 0$.

If $z \in \mathcal{P}$ is ML-random then $\exists n[z \in \bigcap_{i < k} T_i^{-n}(\mathcal{P})]$.

Some references

- Kenshi Miyabe, N. and Jing Zhang. Using almost-everywhere theorems from analysis to study randomness. Bulletin of Symbolic Logic 22(3):305-331, 2016.
- Alexander Galicki and N. A computational approach to the Borwein-Ditor Theorem. In: 12th Conference on Computability in Europe (CiE), Paris, Beckmann A., Bienvenu L. (eds.) Lecture Notes in Computer Science 9709: 99-104
- Rod Downey, Satyadev Nandakumar and N. Martin-Loef randomness implies multiple recurrence in effectively closed sets. Notre Dame Journal of Formal Logic 60.3 (2019): 491-502.